TALON6 observatories controller User Manual Talon6 is a safe control system for observatories automation. It allows manual as well as robotic and automated control of roll off roofs and domes for astronomical observatories. It has been designed to provide maximum safety and versatility to astronomical equipment used locally, remotely or robotically. The system is compatible with the commercial automation programs through the ASCOM platform and allows forcing to park the mount before closing the roof. This project has been carried out based on the security needs and experiences as users of remote dome and roll-off-roof observatories since 2005, using the system remotely from the PC via internet for astrophotography sessions or locally. Using the provided keypad we can take control of the observatory for maintenance works, circumventing the security conditions totally or partially, in a permanent or temporary basis. Fig. 1. Talon6 RoR # Description and Mechanical characteristics. The mechanical system is based on a 12V DC motor with a 75:1 reducing gearbox (18Nm torque) driving a M4 hardened steel spur gear (pinion) that engage a M4 rack, made of 3mm galvanized steel, that is fixed to the roof. The trust power and speed of the motor is microprocessor controlled using Pulse With Modulation and PID control. The position of the roof and its velocity are determined by means of the encoder attached to the main shaft of the motor (before the gearbox), giving a total of 2880 pulses per revolution. This allows a fine control of the position as well as of the trust, amperage, speed and acceleration of the motor. The movements of the roof are pretty soft and silent, accelerating smoothly up to the maximum speed and maintaining it constant until it has to decelerate to smoothly stop at the destination point. This tight control also allows to protect the motor and the whole system when the motor stalls due to a possible mechanical failure. Because of the use of the encoder the system can always show accurately the position of the roof and allowing "go to" commands selecting the percentage we want to open the roof. The motor is delivered with a simple but well studied mounting system with a quick release system, this is intended for releasing the motor pinion from the toothed rack what allows to manually move the roof in case of electric failure, for user convenience or for maintenance. ### **Talon6 RoR Features** As already stated, TALON6 moves the motors silently (microprocessor controlled), accelerating smoothly up to the maximum speed and maintaining it until it has to decelerate to smoothly stop at the destination point. It notifies continuously the status of the roof: - Open (magnetic sensor limit switch) - Closed (magnetic sensor limit switch) - Mount at park (magnetic sensors) - Position of the roof (exact percentage by encoder) - Last action performed. - Current status of the sensors and switches shown by light signals in the driver main display. It monitors continuously the following safety conditions and switches. reporting its status as LEDs in the driver window: - Communications with the PC lost. - Internet communications lost. - Cloud watcher, Cloud Sensor, etc. sensor switch. - Power fail (before UPS, Uninterruptible Power Supply) - Countdown to a scheduled shutdown. Talon6 is able to react safely to any of these eventualities ordering the mount to park and ordering the roof to close if needed. It also monitors continuously the control inputs reporting its status: - External keypad with three buttons, OPEN, STOP and CLOSE. - MGM input to Lock and unlock the driver for observatories group, parking all telescopes before closing the observatories. - COM input, that allows open and close the roof directly using a GSM or IP relay. #### Additional features - Direct communications with Losmandy Gemini or AP Mount systems (through a dedicated serial port) to order them to park without PC intervention (covers the communication lost problem). - Includes an specific output to park Paramount mounts without PC intervention. - Direct connection to the IP-SWITCH for automatic equipment switch-off at the end of the session or after a safety closing. - Automatic communications port reconnection after PC disconnection. - Automatic communications port search at the beginning of the connection. - Maximum aperture control with unparked mount. - Possibility of manual Synchronization of the current roof position. Basically TALON6 will park the mount and will close the roof when any of the above mentioned safety conditions appear, except (in general) when the communications with the PC is lost (due to hanged or switched off PC). In this case the roof will be closed with the mount unparked, unless the user configure the system to avoid this closing order. This situation can be avoided for some telescope mounts that allow direct park commands from the Talon6 system. In addition when the user is at the observatory, TALON6 RoR can be managed manually with a keypad included in the control box, which allow the orders Open, Close and Stop. The system can also be managed remotely by activating an additional input (for example using a relay of our GSM-Switch or IP-Switch or another GSM or IP controlled relays system) . # Control program Running in the PC there is a program that communicates with the Talon6 RoR system with the purpose of giving information to the user and allowing him to manage the system. This is what we name Talon6 RoR driver. This driver is compatible with the ASCOM platform and can be invoked from any automation program like AutoPilot or CCDCommander, or by image acquisition programs that are dome or roll off roof compatible like MaximDL. # Installing the Driver Before connecting the Talon6 system to the PC, run the installer. The software to use the Talon6 RoR system is installed in a very simple way by executing the installation program. The necessary files are automatically copied to the C:/TALON6_ROR directory (this includes the USB drivers for communication) and the ASCOM driver is automatically registered in the ASCOM platform as a dome driver. A shortcut is also created on the desktop. # Operation of the Talon6 RoR When the Talon6 RoR driver is invoked the window of figure 2 is shown. As it is initially disconnected from the controller, only three of the buttons are active, The orange button that invite us to connect with the controller and two of the blue buttons: Setup that allows the configuration of the system and Traffic, that opens an additional window to show the traffic among the PC and the controller, useful for debugging. Fig. 2. Talon6 RoR driver disconnected Fig. 3. Talon6 RoR driver connected In the upper part of the window there is an information area where the status of the roof, the last action performed and the status of the countdown (if active) are shown. In the bottom part of the window there is another information area where the status of the sensors, switches and conditions is shown simulating green or red LEDs. Figure 3 shows the same driver window once the connect button has been pushed and connection with the controller has been established. Now all buttons are active. ## **Buttons** Now we will describe the different buttons present on the control window. ## Connect It is the button that initiates communications between the PC and the controller and establish the complete safety measures. Although Talon6 RoR can work independently it also opens the door for other automation programs to communicate with it via ASCOM and use its safety features. This button allows us to fully open the roof. The roof starts accelerating smoothly up to the maximum speed and maintains it until it has to decelerate to smoothly look for the "Open" limit switch. The position of the roof is continuously notified to the user. The roof only starts moving if the safety conditions that are enabled at that moment allow it (See: Safety Conditions). # CLOSE This button is used to fully close the roof. As in the opening, the roof starts accelerating smoothly up to the maximum speed and maintains it until it has to decelerate to smoothly look for the "Closed" limit switch. The position of the roof is continuously notified to the user. Before closing occur, the Mount at park sensors are checked. Several things can happen: - If the mount is already parked the roof will be closed immediately. - If the mount is not parked, the controller notifies to the driver that the mount has to be parked. The Talon6 driver sends the parking order to the driver of the mount. Once the mount is parked the roof will be closed immediately. For this action to work, the mount and the PC must be turned on with communication and the ASCOM driver of the mount installed and running. - If the mount is not parked and the mount does not park in a time specified by the user (lack of communication between the controller and the PC or between the PC and the mount) the controller will close the roof making a safety absolute closing. This can result in a possible contact of the roof and the telescope if it protrudes above the roof. This is a point where the user takes full responsibility for the possible effects over his equipment when programming this safety absolute closing. He has to weight for example the effects of the roof-telescope contact against a wet telescope, mount and equipment if it is raining. ## Warning. If the parking timeout established by the user in Setup/Parameters/Del_Park is cero, the roof will never be closed while the mount is not parked. This item is intended for users who do not want their telescope to be pushed by the roof when there is a safety absolute closing and the telescope protrudes above the roof. Pushing this button stops the roof softly, with a deceleration ramp, provided that it was moving. Allows to establish manually the position of the roof in terms of opening percentage. Enter the percentage in the text window and push the button. This button allows us to open the roof up to the desired percentage. Just enter the amount in the text window besides the button and press GOTO. The roof will move ramping up and down reaching the required position. This is provided for example for a possible ventilation with restriction of wind and dust, or for performing maintenance actions at the observatory with natural light. We can even establish how long the roof will be open by entering the activating the "Timeout Expired" condition checkbox and typing on his text window the time in seconds we want it open. This action will be always restricted by the safety conditions if they are activated. With the roof in stationary state open, partially open or closed this button allow disabling all safety conditions at once. In such a way we will be able to freely open and close the roof manually from the driver or from the controller box keyboard, even if there is a safety condition active. If the button is of green color the conditions are enabled or disabled as established in the setup. To disable all conditions press the button [10] (it will change to red color [10] as a warning that all safety conditions are disabled)... ATTENTION Remember enabling them again before working in automated mode. For enabling them again you only need to click the setup button. The setup window will open showing the safety conditions: Fig. 4. Setup window Click on the OK button and the safety conditions will be enabled again in the same state they were before disabling them. The button will change again to green color. If this button is pushed when the roof is moving the button will change to red color and the roof will be stopped suddenly with no deceleration ramp. It is an emergency stop. This action is provided for stopping quickly the motor when a contingency appears that you could see for example through your webcam. This action disables the safety conditions. To enable them again follow the steps seen in previous paragraphs. Once activated the button will turn to green again. Do not forget to leave the safety conditions enabled if you do care for your equipment. Traffic The Traffic button shows different aspects of communications between the Talon6 RoR driver and the controller, ASCOM calls, communication protocols with PC or communications and information of the system as encoder pulses, voltage of the power supply motor power, etc. It is very useful for debugging problems. # Calibrate Pressing this button with the roof closed allows the calibration of the system, that is, to perform a complete opening looking for the "Open" limit switch, In this way the number of encoder pulses corresponding to 100% open can be stored and used to know with accuracy the position of the roof and manage adequately the acceleration and braking ramps for a soft start and stop of the movement, avoiding sudden impacts in the extreme positions of the roof. ## Information sections #### **Last Action and Time Out** At the top of the control window there is a section with black background that shows the status of the roof, the last action performed and the timeout countdown, that is, remaining time before the closing programmed in the setup. The status sis shown as: OPEN, CLOSED, OPENING, CLOSING, ERROR, followed by the percentage the roof is open. The last action performed by the controller (LA). The different Messages that can be read in Last Action are (The number is the reference in the log file): | Connecting Looking for Talon6 Talon6 not found | | Connecting the driver with the controller. Looking for the com port of Talon6. There is no Talon6 available. | |------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------| | Waiting for Talon6 | | The connection is waiting for the com port. | | None | 0 | No Action. | | Open by user | 1 | Roof opened by the user. | | Closed by user | 2 | Closed roof (with Park) by the user. | | Stop by user | 3 | Motor stopped by the user. | | Goto by user | 4 | The user executed a Goto command. | | Calibrate by user | 5 | Calibration by the user | | Closed. Cloud-Rain | 6 | Roof closed (with Park) due to bad weather. | | Closed. Power down | 7 | Roof closed (with Park) due to power outage. | | Closed. Connection Lost | 8 | Roof closed due to PC connection lost. | | Closed. Internet Lost | 9 | Roof closed (with Park) due to Internet lost. | | Closed. Time expired | 10 | Roof closed (with Park) due to Timeout. | | Closed by MGM | 11 | Roof closed (with Park) by Management | | Stop. Motor Stalled | 12 | Motor stop by mechanical/electrical problem. | | Stop Emergency | 13 | Emergency stop by the user. | #### Switches and conditions At the bottom of the control window there is another section with black background that shows in real time the status of all the sensors, switches and conditions of the Talon6 RoR controller. It is very useful to check that all of them are working correctly. This is the meaning of the information shown: **PWL** Power lost / Power fail **CLW** Cloud Watcher relay closed **TOUT** Closing countdown active **INTER** Internet lost **MAP** Mount at park position **TOP** Roof totally open **TCL** Roof totally closed **OPEN** Open button pushed STOP Stop button pushed Close button pushed **MGM** Closed by management input active **COM** Direct command input active **PWL, CLW e INTER** will glow green when the condition is raised. If the safety condition is also enabled in the setup it will glow red. **TOUT** just will glow red when the condition is enabled in the setup and the countdown is higher than zero. The rest of them will glow green when they are active. # Setup Clicking this button opens the configuration window that allows defining the behavior of the system, the selection of the telescope and defining the safety conditions. In this window there are 6 sections corresponding to: Version, Parameters, Closing conditions, Connection, Opening conditions and other. There is also a button named Motor setup that opens a new window where the motor parameters can be configured. Fig. 4. Setup window #### Version section: Shows the driver version and the controller firmware version. #### **Parameters section:** **Encoder ticks:** Defines the number of ticks generated by the encoder during the calibration process Calibrate. Can also be changed manually. **Del Park (s):** It is the time in seconds that we give to our mount to park before making a safety absolute closing because the mount has not arrived to the parking point detected by the magnetic sensors. This parking time is determined by taking the mount to an endpoint low and to the west (For the Northern Hemisphere. For the Southern Hemisphere is the other way around) to provoke a Meridian Flip and giving the order to Park. We will then measure the time it takes to reach the established Park position and introduce the data in seconds with a little margin (10 seconds for example), giving time to the mount to reach the parking point before the controller closes the roof. If you put a zero in this box the roof will not close until it detects that the mount is parked. ## Personal note The problem of collisions in case of safety absolute closing is given by the equation: telescope size, column height, mount and height of the observatory (and not always has to happen). This has to be taken into account before deciding how and when the Talon6 RoR controller closes the roof. Here the user always decides and has to put in the balance what to do when a PC loss or a mount malfunction, etc. arises: To leave the equipment outdoors, exposed to the elements, or to allow the telescope to suffer the push of the roof when the Talon6 RoR orders to close saving the equipment. **Absolute closing.** We call absolute closing to the point where the Talon6 controller closes the observatory considering more important to close at all costs avoiding that the equipment remain exposed to uncontrolled atmospheric conditions or security, despite the telescope may suffer some damage when protruding from the roof. Pushing this button opens the ASCOM telescope chooser window: Here we will click in the little arrow to see the available mount ASCOM drivers: Among them we have to select the driver of our mount that is supposed to be there. In our example it is a Gemini telescope: Clicking OK we are telling to the Talon6 driver which one is the driver that has to be invoked to park the mount before closing the roof. ### **Connection section** In this section we tell the driver the com port assigned to the Talon6 controller. This port is assigned by Windows. If a port higher than 16 is assigned we have to relocate it. If we know the port number we just select it clicking in the arrow. If we select port 0 the driver will automatically look for a Talon6 among the first 16 ports. # Closing conditions section Here we will find 5 checkboxes with its associated text window for defining the delay in seconds from the instant the condition arises and the starting of the park and close action. The closing conditions or safety conditions are the following: **Power Down:** This condition arises when the power is down. If the power is not is restored before the time specified in the text window the controller will order to park the mount and close the roof. This feature works if you have a UPS system (Uninterruptible Power Supply.) Of course the sensor has to be connected before the UPS. **Cloud-Rain Condition:** This condition is raised by the CloudWatcher system due to bad weather. If the condition remains active for the time specified in the text window the controller will order to park the mount and close the roof. Waiting for the specified time can prevent a premature closing due to some momentary instability, as a group of loose clouds, etc. **Timeout Expired:** This box helps to activate a temporal opening of the roof for a programmed time in seconds. When the countdown reaches the zero value the controller will Order to park the mount and close the roof If the roof is open when this condition is active, the countdown starts when you exit the setup by pressing OK. If not, it will start when an open command either from the driver or from the keypad of the Talon6 is accepted. The countdown is restarted every time an open command is accepted. Here again there is no limit for the imagination, programmed ventilation controlled by the rest of the safety conditions, Image acquisition with no automation programs: For example we can program to close the roof after X hours taking pictures. After that time the Talon6 controller will order to park the mount and close the roof. During the session the rest of the safety conditions are protecting the system. **Comunication Lost:** This condition arises when the communication with the PC is lost. If the communication is not is restored before the time specified in the text window the Talon6 controller will and close the roof. If possible the controller will give a direct park order to the mount. If the mount does not have that feature available an safety absolute closing is performed. **Internet Lost:** This condition, managed directly by the driver arises when the internet connection is dead. If this connection is not recovered in the specified time the driver will send a park mount and close roof order to the Talon6 controller. Losing the Internet connection when working in remote can sometimes jeopardize our equipment for an indefinite period of time. This safety condition helps to protect the equipment in such kind of situations. The time usually specified for this condition to provoke the reaction of the system is much higher than in the rest of the conditions. ## **Opening conditions section** Here we find a single checkbox with its associated text window that has the purpose of limiting the roof aperture. Some observatories allow the telescope to protrude above the roof limit when it is closed. That means that if we open the roof with the telescope unparked there is the possibility of contact between the roof and the telescope. This problem can be avoided clicking in this checkbox and writing in the textbox window a percentage of opening that avoid hitting the telescope. In that way we can be sure that the telescope is not going to be hit in case of giving an opening command or a goto over the specified percentage. If the mount is parked there is no restriction to open or goto commands. If the mount is unparked and the position of the roof is below the specified limit, any open command or goto command over the specified percentage will result in the roof open up to the limit (a 30% in the example). #### Other section Here we find a single checkbox that allows to enable or disable the order to the IP-switch for switching off the selected equipment once the roof has been closed. Motor Setup Clicking this button opens the motor setup window that allows defining the motor behaviour. The first two lines are for defining the maximum and minimum speed for the motor in percentage over its absolute maximum speed (0 to 100). The maximum speed has to be higher than the minimum speed. The third line defines the acceleration (0 to 100) and the fourth one defines how long is going to be the deceleration ramp before stopping (0 to 100). The fifth line defines the encoder factor (2 or 4 depending on the motor version). The last line allows to reverse the motor movement, depending on how the user has decided to install it. ## Talon6 controller keypad It consists of three buttons: **Green**: Orders to open the roof. **Red**: Orders the roof to stop moving. **Black**: Orders to close the roof. If the controller does not open the roof when the green button is pushed, probably it is because there is a safety condition active from the previous session, for example the CloudWatcher does not reset its condition relay when the session is closed. It will reset it when its program is run again or when it is powered down and then powered up. In this case if you want to open anyway press first the Red Button and the safety conditions will be disabled releasing in that way the open button. Using the keypad is equivalent in some way to using the Open, Close and Emergency Stop buttons in the driver. The difference is that pushing the black button orders to close the roof without previously ordering the mount to park. ## Other options The Talon6 can perform, if necessary, general closures of roofs parking previously the telescope mounts in a set of observatories controlled by our system. Also, by order of the manager of the set of observatories, the roofs can be blocked closed and the running drivers disabled (all the operation buttons will remain inactive), individually or in general. All this can be done in situ or remotely by simply using the MGM input in the controller prepared for this purpose. ### Conclusion Talon6, once parameterized, becomes a good ally for safety and comfort, working manually, automated and remote, helping our observatory to become a technologically advanced place placing it in the XXI century and providing the automation programs with an intelligent way of communication with our observatory allowing opening and closing it in a much safer way. For any question please contact: Antonio Pérez Ambite aperez@fi.upm.es Miguel Ángel García Borrella miguelang555@gmail.com Updated september-23rd-2015 # Some images from SPAG Monfrague: Talon6 installed in the right roof of the observatory Talon6 installed in the left roof of the observatory Motor and suport with quick release system Open and Closed sensors Controller with finished internal wiring Logic schematic of the Talon6 connections